Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Infect Immun ; 92(4): e0050323, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38451079

RESUMO

Non-neutralizing functions of antibodies, including phagocytosis, may play a role in Chlamydia trachomatis (CT) infection, but these functions have not been studied and assays are lacking. We utilized a flow-cytometry-based assay to determine whether serum samples from a well-characterized cohort of CT-infected and naïve control individuals enhanced phagocytosis via Fc-receptor-expressing THP-1 cells, and whether this activity correlated with antibody titers. Fc-receptor-mediated phagocytosis was detected only in CT+ donors. Phagocytosis generally did not correlate well with antibody titer. In addition, we found that complement from both CT+ and negative individuals enhanced phagocytosis of CT into primary neutrophils. These results suggest that anti-CT antibodies can have functions that are not reflected by titer. This method could be used to quantitively measure Fc-receptor-mediated function of anti-CT antibodies or complement activity and could reveal new immune correlates of protection.


Assuntos
Infecções por Chlamydia , Receptores Fc , Humanos , Fagocitose , Neutrófilos , Anticorpos Antibacterianos , Chlamydia trachomatis
2.
Front Reprod Health ; 5: 1199740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601895

RESUMO

Background: The current testing approach to diagnose Chlamydia trachomatis (CT) infection relies on nucleic acid amplification tests (NAATs). These tests are highly sensitive, but do not distinguish between active infection and residual bacterial nucleic acid which may remain after resolution of infection, or via cross-contamination. Better methods to assess the viability of CT detected in clinical samples would be useful in determining the relevance of CT detection in a variety of clinical settings. The goal of this study was to test viability PCR (vPCR) as a method to distinguish viable bacteria from non-viable CT. Methods: The vPCR relies on a propidium monoazide dye (PMAxx), which intercalates into accessible DNA from dead organisms and prevents their detection in a PCR assay for the CT ompA gene. We used digital PCR to quantify absolute genome copy numbers from samples. We validated the vPCR approach using laboratory stocks of CT with known viability. Then, we tested total DNA, viable CT DNA, and culture results from 18 clinical vaginal specimens and 25 rectal clinical specimens, all of which had tested positive by NAAT. Results: In laboratory stocks of CT, vPCR using defined ratios of heat-killed to live bacteria tracked closely with expected results. In vaginal clinical specimens, vPCR and total DNA results were correlated, though total DNA genomes outnumbered viable genomes by 2.2-52.6-fold more copies. As expected, vPCR detected more total genomes than culture results. Both vPCR and total DNA correlated with culture results (Spearman correlation R = 0.8425 for total DNA and 0.8056 for vPCR). Ten rectal NAAT positive specimens were negative by total DNA PCR, vPCR, and were negative or inconclusive by culture. Of the 6 rectal specimens that were culture positive, all were total DNA and vPCR positive. vPCR additionally detected viable bacterial DNA in 8 specimens which were NAAT + and culture negative, though levels were very low (mean 1,357 copies/ml). Conclusions: vPCR is a fast and easy method to assess viability in clinical specimens and is more correlated with culture results than total DNA PCR. Inconsistent ratios between total DNA and vPCR results suggest that the amount of dead bacteria varies considerably in clinical specimens. Results from rectal specimens suggest that many NAAT positive specimens do not in fact represent live replicating bacteria, and likely result in significant overuse of unnecessary antibiotics.

3.
Infect Immun ; 91(7): e0009623, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37255490

RESUMO

All members of the family Chlamydiaceae have lipopolysaccharides (LPS) that possess a shared carbohydrate trisaccharide antigen, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) that is functionally uncharacterized. A single gene, genus-specific epitope (gseA), is responsible for attaching the tri-Kdo to lipid IVA. To investigate the function of Kdo in chlamydial host cell interactions, we made a gseA-null strain (L2ΔgseA) by using TargeTron mutagenesis. Immunofluorescence microscopy and immunoblotting with a Kdo-specific monoclonal antibody demonstrated that L2ΔgseA lacked Kdo. L2ΔgseA reacted by immunoblotting with a monoclonal antibody specific for a conserved LPS glucosamine-PO4 epitope, indicating that core lipid A was retained by the mutant. The mutant strain produced a similar number of inclusions as the parental strain but yielded lower numbers of infectious elementary bodies. Transmission electron microscopy of L2ΔgseA-infected cells showed atypical developmental forms and a reduction in the number of elementary bodies. Immunoblotting of dithiothreitol-treated L2ΔgseA-infected cells lysates revealed a marked reduction in outer membrane OmcB disulfide cross-linking, suggesting that the elementary body outer membrane structure was affected by the lack of Kdo. Notably, lactic acid dehydrogenase release by infected cells demonstrated that L2ΔgseA was significantly more cytotoxic to host cells than the wild type. The cytotoxic phenotype may result from an altered outer membrane biogenesis structure and/or function or, conversely, from a direct pathobiological effect of Kdo on an unknown host cell target. These findings implicate a previously unrecognized role for Kdo in host cell interactions that facilitates postinfection host cell survival.


Assuntos
Chlamydia trachomatis , Lipopolissacarídeos , Lipopolissacarídeos/metabolismo , Sequência de Carboidratos , Epitopos , Açúcares Ácidos , Anticorpos Monoclonais
4.
Infect Immun ; 90(11): e0026522, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36214558

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterium that causes serious diseases in humans. Rectal infection and disease caused by this pathogen are important yet understudied aspects of C. trachomatis natural history. The University of Washington Chlamydia Repository has a large collection of male-rectal-sourced strains (MSM rectal strains) isolated in Seattle, USA and Lima, Peru. Initial characterization of strains collected over 30 years in both Seattle and Lima led to an association of serovars G and J with male rectal infections. Serovar D, E, and F strains were also collected from MSM patients. Genome sequence analysis of a subset of MSM rectal strains identified a clade of serovar G and J strains that had high overall genomic identity. A genome-wide association study was then used to identify genomic loci that were correlated with tissue tropism in a collection of serovar-matched male rectal and female cervical strains. The polymorphic membrane protein PmpE had the strongest correlation, and amino acid sequence alignments identified a set of PmpE variable regions (VRs) that were correlated with host or tissue tropism. Examination of the positions of VRs by the protein structure-predicting Alphafold2 algorithm demonstrated that the VRs were often present in predicted surface-exposed loops in both PmpE and PmpH protein structure. Collectively, these studies identify possible tropism-predictive loci for MSM rectal C. trachomatis infections and identify predicted surface-exposed variable regions of Pmp proteins that may function in MSM rectal versus cervical tropism differences.


Assuntos
Infecções por Chlamydia , Homossexualidade Masculina , Humanos , Masculino , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Transferência Genética Horizontal , Estudo de Associação Genômica Ampla , Genômica
5.
Front Cell Infect Microbiol ; 12: 861899, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321311

RESUMO

Lateral gene transfer (LGT) facilitates many processes in bacterial ecology and pathogenesis, especially regarding pathogen evolution and the spread of antibiotic resistance across species. The obligate intracellular chlamydiae, which cause a range of diseases in humans and animals, were historically thought to be highly deficient in this process. However, research over the past few decades has demonstrated that this was not the case. The first reports of homologous recombination in the Chlamydiaceae family were published in the early 1990s. Later, the advent of whole-genome sequencing uncovered clear evidence for LGT in the evolution of the Chlamydiaceae, although the acquisition of tetracycline resistance in Chlamydia (C.) suis is the only recent instance of interphylum LGT. In contrast, genome and in vitro studies have shown that intraspecies DNA exchange occurs frequently and can even cross species barriers between closely related chlamydiae, such as between C. trachomatis, C. muridarum, and C. suis. Additionally, whole-genome analysis led to the identification of various DNA repair and recombination systems in C. trachomatis, but the exact machinery of DNA uptake and homologous recombination in the chlamydiae has yet to be fully elucidated. Here, we reviewed the current state of knowledge concerning LGT in Chlamydia by focusing on the effect of homologous recombination on the chlamydial genome, the recombination machinery, and its potential as a genetic tool for Chlamydia.


Assuntos
Chlamydia , Transferência Genética Horizontal , Animais , Chlamydia/genética , Chlamydia trachomatis/genética , Resistência a Tetraciclina/genética
6.
Mol Microbiol ; 116(6): 1433-1448, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34738268

RESUMO

Chlamydia muridarum actively grows in murine mucosae and is a representative model of human chlamydial genital tract disease. In contrast, C. trachomatis infections in mice are limited and rarely cause disease. The factors that contribute to these differences in host adaptation and specificity remain elusive. Overall genomic similarity leads to challenges in the understanding of these significant differences in tropism. A region of major genetic divergence termed the plasticity zone (PZ) has been hypothesized to contribute to the host specificity. To evaluate this hypothesis, lateral gene transfer was used to generate multiple hetero-genomic strains that are predominately C. trachomatis but have replaced regions of the PZ with those from C. muridarum. In vitro analysis of these chimeras revealed C. trachomatis-like growth as well as poor mouse infection capabilities. Growth-independent cytotoxicity phenotypes have been ascribed to three large putative cytotoxins (LCT) encoded in the C. muridarum PZ. However, analysis of PZ chimeras supported that gene products other than the LCTs are responsible for cytopathic and cytotoxic phenotypes. Growth analysis of associated chimeras also led to the discovery of an inclusion protein, CTL0402 (CT147), and homolog TC0424, which was critical for the integrity of the inclusion and preventing apoptosis.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia muridarum/genética , Chlamydia trachomatis/genética , Transferência Genética Horizontal , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chlamydia muridarum/metabolismo , Chlamydia trachomatis/metabolismo , Feminino , Variação Genética , Humanos , Camundongos Endogâmicos C57BL
7.
Infect Immun ; 88(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32601108

RESUMO

Chlamydia trachomatis infection of the human fallopian tubes can lead to damaging inflammation and scarring, ultimately resulting in infertility. To study the human cellular responses to chlamydial infection, researchers have frequently used transformed cell lines that can have limited translational relevance. We developed a primary human fallopian tube epithelial cell model based on a method previously established for culture of primary human bronchial epithelial cells. After protease digestion and physical dissociation of excised fallopian tubes, epithelial cell precursors were expanded in growth factor-containing medium. Expanded cells were cryopreserved to generate a biobank of cells from multiple donors and cultured at an air-liquid interface. Culture conditions stimulated cellular differentiation into polarized mucin-secreting and multiciliated cells, recapitulating the architecture of human fallopian tube epithelium. The polarized and differentiated cells were infected with a clinical isolate of C. trachomatis, and inclusions containing chlamydial developmental forms were visualized by fluorescence and electron microscopy. Apical secretions from infected cells contained increased amounts of proteins associated with chlamydial growth and replication, including transferrin receptor protein 1, the amino acid transporters SLC3A2 and SLC1A5, and the T-cell chemoattractants CXCL10, CXCL11, and RANTES. Flow cytometry revealed that chlamydial infection induced cell surface expression of T-cell homing and activation proteins, including ICAM-1, VCAM-1, HLA class I and II, and interferon gamma receptor. This human fallopian tube epithelial cell culture model is an important tool with translational potential for studying cellular responses to Chlamydia and other sexually transmitted pathogens.


Assuntos
Células Epiteliais/imunologia , Regulação da Expressão Gênica/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Linfócitos T/imunologia , Adulto , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/imunologia , Antígenos CD/genética , Antígenos CD/imunologia , Biomarcadores/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Quimiocina CXCL11/genética , Quimiocina CXCL11/imunologia , Infecções por Chlamydia/genética , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/imunologia , Células Epiteliais/microbiologia , Tubas Uterinas/citologia , Tubas Uterinas/cirurgia , Feminino , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Modelos Biológicos , Cultura Primária de Células , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Receptores da Transferrina/genética , Receptores da Transferrina/imunologia , Salpingectomia , Linfócitos T/microbiologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia , Receptor de Interferon gama
9.
J Bacteriol ; 201(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501283

RESUMO

Functional genetic analysis of Chlamydia has been a challenge due to the historical genetic intractability of Chlamydia, although recent advances in chlamydial genetic manipulation have begun to remove these barriers. Here, we report the development of the Himar C9 transposon system for Chlamydia muridarum, a mouse-adapted Chlamydia species that is widely used in Chlamydia infection models. We demonstrate the generation and characterization of an initial library of 33 chloramphenicol (Cam)-resistant, green fluorescent protein (GFP)-expressing C. muridarum transposon mutants. The majority of the mutants contained single transposon insertions spread throughout the C. muridarum chromosome. In all, the library contained 31 transposon insertions in coding open reading frames (ORFs) and 7 insertions in intergenic regions. Whole-genome sequencing analysis of 17 mutant clones confirmed the chromosomal locations of the insertions. Four mutants with transposon insertions in glgB, pmpI, pmpA, and pmpD were investigated further for in vitro and in vivo phenotypes, including growth, inclusion morphology, and attachment to host cells. The glgB mutant was shown to be incapable of complete glycogen biosynthesis and accumulation in the lumen of mutant inclusions. Of the 3 pmp mutants, pmpI was shown to have the most pronounced growth attenuation defect. This initial library demonstrates the utility and efficacy of stable, isogenic transposon mutants for C. muridarum The generation of a complete library of C. muridarum mutants will ultimately enable comprehensive identification of the functional genetic requirements for Chlamydia infection in vivoIMPORTANCE Historical issues with genetic manipulation of Chlamydia have prevented rigorous functional genetic characterization of the ∼1,000 genes in chlamydial genomes. Here, we report the development of a transposon mutagenesis system for C. muridarum, a mouse-adapted Chlamydia species that is widely used for in vivo investigations of chlamydial pathogenesis. This advance builds on the pioneering development of this system for C. trachomatis We demonstrate the generation of an initial library of 33 mutants containing stable single or double transposon insertions. Using these mutant clones, we characterized in vitro phenotypes associated with genetic disruptions in glycogen biosynthesis and three polymorphic outer membrane proteins.


Assuntos
Proteínas de Bactérias/genética , Chlamydia muridarum/genética , Cromossomos Bacterianos/química , Elementos de DNA Transponíveis , Mutagênese , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Sequência de Bases , Infecções por Chlamydia/microbiologia , Chlamydia muridarum/efeitos dos fármacos , Chlamydia muridarum/metabolismo , Cloranfenicol/farmacologia , Cromossomos Bacterianos/metabolismo , Células Clonais , Biblioteca Gênica , Camundongos , Mutação , Fases de Leitura Aberta , Plasmídeos/química , Plasmídeos/metabolismo , Sequenciamento Completo do Genoma
10.
J Bacteriol ; 201(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501285

RESUMO

Lateral gene transfer (LGT) among Chlamydia trachomatis strains is common, in both isolates generated in the laboratory and those examined directly from patients. In contrast, there are very few examples of recent acquisition of DNA by any Chlamydia spp. from any other species. Interspecies LGT in this system was analyzed using crosses of tetracycline (Tc)-resistant C. trachomatis L2/434 and chloramphenicol (Cam)-resistant C. muridarum VR-123. Parental C. muridarum strains were created using a plasmid-based Himar transposition system, which led to integration of the Camr marker randomly across the chromosome. Fragments encompassing 79% of the C. muridarum chromosome were introduced into a C. trachomatis background, with the total coverage contained on 142 independent recombinant clones. Genome sequence analysis of progeny strains identified candidate recombination hot spots, a property not consistent with in vitroC. trachomatis × C. trachomatis (intraspecies) crosses. In both interspecies and intraspecies crosses, there were examples of duplications, mosaic recombination endpoints, and recombined sequences that were not linked to the selection marker. Quantitative analysis of the distribution and constitution of inserted sequences indicated that there are different constraints on interspecies LGT than on intraspecies crosses. These constraints may help explain why there is so little evidence of interspecies genetic exchange in this system, which is in contrast to very widespread intraspecies exchange in C. trachomatisIMPORTANCE Genome sequence analysis has demonstrated that there is widespread lateral gene transfer among strains within the species C. trachomatis and with other closely related Chlamydia species in laboratory experiments. This is in contrast to the complete absence of foreign DNA in the genomes of sequenced clinical C. trachomatis strains. There is no understanding of any mechanisms of genetic transfer in this important group of pathogens. In this report, we demonstrate that interspecies genetic exchange can occur but that the nature of the fragments exchanged is different than those observed in intraspecies crosses. We also generated a large hybrid strain library that can be exploited to examine important aspects of chlamydial disease.


Assuntos
Chlamydia muridarum/genética , Chlamydia trachomatis/genética , Cromossomos Bacterianos/química , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Recombinação Genética , Antibacterianos/farmacologia , Sequência de Bases , Chlamydia muridarum/efeitos dos fármacos , Chlamydia muridarum/metabolismo , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/metabolismo , Cromossomos Bacterianos/metabolismo , Cruzamentos Genéticos , Elementos de DNA Transponíveis , Plasmídeos/química , Plasmídeos/metabolismo , Tetraciclina/farmacologia , Resistência a Tetraciclina/genética
11.
mBio ; 10(4)2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387908

RESUMO

Transposon mutagenesis is a widely applied and powerful genetic tool for the discovery of genes associated with selected phenotypes. Chlamydia trachomatis is a clinically significant, obligate intracellular bacterium for which many conventional genetic tools and capabilities have been developed only recently. This report describes the successful development and application of a Himar transposon mutagenesis system for generating single-insertion mutant clones of C. trachomatis This system was used to generate a pool of 105 transposon mutant clones that included insertions in genes encoding flavin adenine dinucleotide (FAD)-dependent monooxygenase (C. trachomatis148 [ct148]), deubiquitinase (ct868), and competence-associated (ct339) proteins. A subset of Tn mutant clones was evaluated for growth differences under cell culture conditions, revealing that most phenocopied the parental strain; however, some strains displayed subtle and yet significant differences in infectious progeny production and inclusion sizes. Bacterial burden studies in mice also supported the idea that a FAD-dependent monooxygenase (ct148) and a deubiquitinase (ct868) were important for these infections. The ct339 gene encodes a hypothetical protein with limited sequence similarity to the DNA-uptake protein ComEC. A transposon insertion in ct339 rendered the mutant incapable of DNA acquisition during recombination experiments. This observation, along with in situ structural analysis, supports the idea that this protein is playing a role in the fundamental process of lateral gene transfer similar to that of ComEC. In all, the development of the Himar transposon system for Chlamydia provides an effective genetic tool for further discovery of genes that are important for basic biology and pathogenesis aspects.IMPORTANCEChlamydia trachomatis infections have an immense impact on public health; however, understanding the basic biology and pathogenesis of this organism has been stalled by the limited repertoire of genetic tools. This report describes the successful adaptation of an important tool that has been lacking in Chlamydia studies: transposon mutagenesis. This advance enabled the generation of 105 insertional mutants, demonstrating that numerous gene products are not essential for in vitro growth. Mammalian infections using these mutants revealed that several gene products are important for infections in vivo Moreover, this tool enabled the investigation and discovery of a gene critical for lateral gene transfer; a process fundamental to the evolution of bacteria and likely for Chlamydia as well. The development of transposon mutagenesis for Chlamydia has broad impact for the field and for the discovery of genes associated with selected phenotypes, providing an additional avenue for the discovery of molecular mechanisms used for pathogenesis and for a more thorough understanding of this important pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , DNA Bacteriano/genética , Transferência Genética Horizontal , Animais , Proteínas de Bactérias/genética , Elementos de DNA Transponíveis , DNA Bacteriano/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Insercional , Mutação
12.
mBio ; 10(2)2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967464

RESUMO

Interferon-regulated immune defenses protect mammals from pathogenically diverse obligate intracellular bacterial pathogens of the genus Chlamydia Interferon gamma (IFN-γ) is especially important in controlling the virulence of Chlamydia species and thus impacts the modeling of human chlamydial infection and disease in mice. How IFN-γ contributes to cell-autonomous defenses against Chlamydia species and how these pathogens evade IFN-γ-mediated immunity in their natural hosts are not well understood. We conducted a genetic screen which identified 31 IFN-γ-sensitive (Igs) mutants of the mouse model pathogen Chlamydia muridarum Genetic suppressor analysis and lateral gene transfer were used to map the phenotype of one of these mutants, Igs4, to a missense mutation in a putative chlamydial inclusion membrane protein, TC0574. We observed the lytic destruction of Igs4-occupied inclusions and accompanying host cell death in response to IFN-γ priming or various proapoptotic stimuli. However, Igs4 was insensitive to IFN-γ-regulated cell-autonomous defenses previously implicated in anti-Chlamydia trachomatis host defense in mice. Igs4 inclusion integrity was restored by caspase inhibitors, indicating that the IFN-γ-mediated destruction of Igs4 inclusions is dependent upon the function of caspases or related prodeath cysteine proteases. We further demonstrated that the Igs4 mutant is immune restricted in an IFN-γ-dependent manner in a mouse infection model, thereby implicating IFN-γ-mediated inclusion destruction and host cell death as potent in vivo host defense mechanisms to which wild-type C. muridarum is resistant. Overall, our results suggest that C. muridarum evolved resistance mechanisms to counter IFN-γ-elicited programmed cell death and the associated destruction of intravacuolar pathogens.IMPORTANCE Multiple obligatory intracellular bacteria in the genus Chlamydia are important pathogens. In humans, strains of C. trachomatis cause trachoma, chlamydia, and lymphogranuloma venereum. These diseases are all associated with extended courses of infection and reinfection that likely reflect the ability of chlamydiae to evade various aspects of host immune responses. Interferon-stimulated genes, driven in part by the cytokine interferon gamma, restrict the host range of various Chlamydia species, but how these pathogens evade interferon-stimulated genes in their definitive host is poorly understood. Various Chlamydia species can inhibit death of their host cells and may have evolved this strategy to evade prodeath signals elicited by host immune responses. We present evidence that chlamydia-induced programmed cell death resistance evolved to counter interferon- and immune-mediated killing of Chlamydia-infected cells.


Assuntos
Apoptose , Chlamydia muridarum/imunologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata , Interferon gama/metabolismo , Animais , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlamydia muridarum/genética , Modelos Animais de Doenças , Testes Genéticos , Corpos de Inclusão/microbiologia , Camundongos
13.
J Infect Dis ; 220(3): 476-483, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-30873541

RESUMO

BACKGROUND: Rectal Chlamydia trachomatis (CT) is common among clinic-attending women, but little is known about clearance and health implications of rectal CT. METHODS: At the municipal sexually transmitted disease clinic in Seattle, Washington, in 2017-2018, we enrolled women at high risk for urogenital CT into an 8-week prospective study. Women received standard CT treatment at enrollment. Women self-collected daily rectal and vaginal specimens for nucleic acid amplification tests (NAATs) and completed weekly sexual exposure diaries. We performed CT culture on the enrollment rectal specimen. RESULTS: We enrolled 50 women; 13 (26%) tested positive for vaginal (n = 11) and/or rectal (n = 11) CT. Sixty percent of women with rectal CT per NAAT were also culture positive. Median time to CT clearance after azithromycin treatment was 8.0 days for vaginal CT and 7.0 days for rectal CT. Eight women with rectal CT at enrollment had at least 1 rectal CT-positive NAAT after clearance of the initial infection; none reported anal sex. CONCLUSIONS: Most NAAT-positive rectal infections were culture positive, suggesting active infection. Time to NAAT clearance of rectal and genital tract CT was similar, and intermittent rectal CT positivity was common in the absence of anal sexual exposure. The cause of recurrent/intermittent rectal CT and the clinical implications of these infections require further study.


Assuntos
Antibacterianos/uso terapêutico , Infecções por Chlamydia/tratamento farmacológico , Reto/microbiologia , Infecções Sexualmente Transmissíveis/tratamento farmacológico , Infecções Sexualmente Transmissíveis/microbiologia , Vagina/microbiologia , Adulto , Azitromicina/uso terapêutico , Chlamydia trachomatis/efeitos dos fármacos , Feminino , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Estudos Prospectivos , Recidiva , Comportamento Sexual/efeitos dos fármacos , Washington , Adulto Jovem
14.
J Infect Dis ; 215(11): 1657-1665, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368459

RESUMO

Background: The biology of recurrent or long-term infections of humans by Chlamydia trachomatis is poorly understood. Because repeated or persistent infections are correlated with serious complications in humans, understanding these processes may improve clinical management and public health disease control. Methods: We conducted whole-genome sequence analysis on C. trachomatis isolates collected from a previously described patient set in which individuals were shown to be infected with a single serovar over a lengthy period. Results: Data from 5 of 7 patients showed compelling evidence for the ability of these patients to harbor the same strain for 3-5 years. Mutations in these strains were cumulative, very uncommon, and not linked to any single protein or pathway. Serovar J strains isolated from 1 patient 3 years apart did not accumulate a single base change across the genome. In contrast, the sequence results of 2 patients, each infected only with serovar Ia strains, revealed multiple same-serovar infections over 1-5 years. Conclusions: These data demonstrate examples of long-term persistence in patients in the face of repeated antibiotic therapy and show that pathogen mutational strategies are not important in persistence of this pathogen in patients.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/patogenicidade , Genitália Feminina/microbiologia , Infecções por Chlamydia/epidemiologia , Chlamydia trachomatis/classificação , Estudos de Coortes , DNA Bacteriano/análise , DNA Bacteriano/genética , Feminino , Genoma Bacteriano/genética , Genômica , Humanos , Mutação/genética , Filogenia
15.
Pathog Dis ; 74(7)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27620201

RESUMO

Chlamydiae exit via membrane-encased extrusion or through lysis of the host cell. Extrusions are novel, pathogen-containing structures that confer infectious advantages to Chlamydia, and are hypothesized to promote cell-to-cell spread, dissemination to distant tissues and facilitate immune evasion. The extrusion phenomenon has been characterized for several Chlamydia trachomatis serovars, but a thorough investigation of extrusion for additional clinically relevant C. trachomatis strains and Chlamydia species has yet to be performed. The key parameters investigated in this study were: (i) the conservation of extrusion across the Chlamydia genus, (ii) the functional requirement for candidate Chlamydia genes in extrusion formation i.e. IncA and CT228 and (iii) extrusion-mediated uptake, and consequent survival of Chlamydia inside macrophages. Inclusion morphology was characterized by live fluorescence microscopy, using an inverted GFP strategy, at early and mid-stages of infection. Enriched extrusions were used to infect bone marrow-derived macrophages, and bacterial viability was measured following macrophage engulfment. Our results demonstrate that extrusion is highly conserved across chlamydiae, including ocular, STD and LGV biovars and divergent Chlamydia species. Consequently, this exit mechanism for Chlamydia may fulfill common advantages important for pathogenesis.


Assuntos
Extensões da Superfície Celular/fisiologia , Chlamydia/fisiologia , Evolução Biológica , Linhagem Celular , Infecções por Chlamydia/microbiologia , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia
16.
J Bacteriol ; 198(15): 2131-9, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27246568

RESUMO

UNLABELLED: Intracellular bacterial pathogens in the family Chlamydiaceae are causes of human blindness, sexually transmitted disease, and pneumonia. Genetic dissection of the mechanisms of chlamydial pathogenicity has been hindered by multiple limitations, including the inability to inactivate genes that would prevent the production of elementary bodies. Many genes are also Chlamydia-specific genes, and chlamydial genomes have undergone extensive reductive evolution, so functions often cannot be inferred from homologs in other organisms. Conditional mutants have been used to study essential genes of many microorganisms, so we screened a library of 4,184 ethyl methanesulfonate-mutagenized Chlamydia trachomatis isolates for temperature-sensitive (TS) mutants that developed normally at physiological temperature (37°C) but not at nonphysiological temperatures. Heat-sensitive TS mutants were identified at a high frequency, while cold-sensitive mutants were less common. Twelve TS mutants were mapped using a novel markerless recombination approach, PCR, and genome sequencing. TS alleles of genes that play essential roles in other bacteria and chlamydia-specific open reading frames (ORFs) of unknown function were identified. Temperature-shift assays determined that phenotypes of the mutants manifested at distinct points in the developmental cycle. Genome sequencing of a larger population of TS mutants also revealed that the screen had not reached saturation. In summary, we describe the first approach for studying essential chlamydial genes and broadly applicable strategies for genetic mapping in Chlamydia spp. and mutants that both define checkpoints and provide insights into the biology of the chlamydial developmental cycle. IMPORTANCE: Study of the pathogenesis of Chlamydia spp. has historically been hampered by a lack of genetic tools. Although there has been recent progress in chlamydial genetics, the existing approaches have limitations for the study of the genes that mediate growth of these organisms in cell culture. We used a genetic screen to identify conditional Chlamydia mutants and then mapped these alleles using a broadly applicable recombination strategy. Phenotypes of the mutants provide fundamental insights into unexplored areas of chlamydial pathogenesis and intracellular biology. Finally, the reagents and approaches we describe are powerful resources for the investigation of these organisms.


Assuntos
Chlamydia trachomatis/fisiologia , Recombinação Genética , Temperatura , Alelos , Chlamydia trachomatis/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , Genótipo , Células HeLa , Humanos , Mutação
17.
F1000Prime Rep ; 6: 120, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25580274

RESUMO

Worldwide, Chlamydia trachomatis infections rank among the most common sexually transmitted infections (STI), and cause notable reproductive morbidity in women. Although advances in highly accurate and non-invasive diagnostic testing have allowed for better estimation of the burden of disease-especially the asymptomatic state-we still lack a true point-of-care test, and many infections go undetected and untreated. Moreover, limited resources and effort for managing sexual partners of those in whom infection is actually identified comprise a major challenge to control. Here, we review the current state of understanding of this common infection, and efforts to control it.

18.
Microbiology (Reading) ; 159(Pt 10): 2109-2117, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23842467

RESUMO

A culture-independent genome sequencing approach was developed and used to examine genomic variability in Chlamydia trachomatis-positive specimens that were collected from patients in the Seattle, WA, USA, area. The procedure is based on an immunomagnetic separation approach with chlamydial LPS-specific mAbs, followed by DNA purification and total DNA amplification, and subsequent Illumina-based sequence analysis. Quality of genome sequencing was independent of the total number of inclusion-forming units determined for the sample and the amount of non-chlamydial DNA in the Illumina libraries. A geographically and temporally linked clade of isolates was identified with evidence of several different regions of recombination and variable ompA sequence types, suggesting that recombination is common within outbreaks. Culture-independent sequence analysis revealed a linkage pattern at two nucleotide positions that was unique to the genomes of isolates from patients, but not in C. trachomatis recombinants generated in vitro. These data demonstrated that culture-independent sequence analysis can be used to rapidly and inexpensively collect genome data from patients infected by C. trachomatis, and that this approach can be used to examine genomic variation within this species.


Assuntos
Técnicas Bacteriológicas/métodos , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/isolamento & purificação , Variação Genética , Genitália/microbiologia , Recombinação Genética , Chlamydia trachomatis/classificação , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Humanos , Separação Imunomagnética/métodos , Biologia Molecular/métodos , Dados de Sequência Molecular , Análise de Sequência de DNA , Estados Unidos
19.
BMC Microbiol ; 13: 142, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23786423

RESUMO

BACKGROUND: Pre-genomic and post-genomic studies demonstrate that chlamydiae actively recombine in vitro and in vivo, although the molecular and cellular biology of this process is not well understood. In this study, we determined the genome sequence of twelve Chlamydia trachomatis recombinants that were generated in vitro under antibiotic selection. These strains were used to explore the process of recombination in Chlamydia spp., including analysis of candidate recombination hotspots, and to correlate known C. trachomatis in vitro phenotypes with parental phenotypes and genotypes. RESULTS: Each of the 190 examined recombination events was the product of homologous recombination, and no candidate targeting motifs were identified at recombination sites. There was a single deletion event in one recombinant progeny that resulted in the removal of 17.1 kilobases between two rRNA operons. There was no evidence for preference for any specific region of the chromosome for recombination, and analyses of a total of over 200 individual recombination events do not provide any support for recombination hotspots in vitro. Two measurable phenotypes were analyzed in these studies. First, the efficiency of attachment to host cells in the absence of centrifugation was examined, and this property segregated to regions of the chromosome that carry the polymorphic membrane protein (Pmp) genes. Second, the formation of secondary inclusions within cells varied among recombinant progeny, but this did not cleanly segregate to specific regions of the chromosome. CONCLUSIONS: These experiments examined the process of recombination in C. trachomatis and identified tools that can be used to associate phenotype with genotype in recombinant progeny. There were no data supporting the hypothesis that particular nucleotide sequences are preferentially used for recombination in vitro. Selected phenotypes can be segregated by analysis of recombination, and this technology may be useful in preliminary analysis of the relationship of genetic variation to phenotypic variation in the chlamydiae.


Assuntos
Chlamydia trachomatis/genética , Genômica , Recombinação Genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Linhagem Celular , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/metabolismo , Humanos , Dados de Sequência Molecular , Fenótipo , Recombinação Genética/efeitos dos fármacos
20.
Antimicrob Agents Chemother ; 56(8): 4296-302, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22644029

RESUMO

A novel and quantitative high-throughput screening approach was explored as a tool for the identification of novel compounds that inhibit chlamydial growth in mammalian cells. The assay is based on accumulation of a fluorescent marker by intracellular chlamydiae. Its utility was demonstrated by screening 42,000 chemically defined compounds against Chlamydia caviae GPIC. This analysis led to the identification of 40 primary-hit compounds. Five of these compounds were nontoxic to host cells and had similar activities against both C. caviae GPIC and Chlamydia trachomatis. The inhibitory activity of one of the compounds, (3-methoxyphenyl)-(4,4,7-trimethyl-4,5-dihydro-1H-[1,2]dithiolo[3,4-C]quinolin-1-ylidene)amine (MDQA), was chlamydia specific and was selected for further study. Selection for resistance to MDQA led to the generation of three independent resistant clones of C. trachomatis. Amino acid changes in SecY, a protein involved in Sec-dependent secretion in Gram-negative bacteria, were associated with the resistance phenotype. The amino acids changed in each of the resistant mutants are located in the predicted central channel of a SecY crystal structure, based on the known structure of Thermus thermophilus SecY. These experiments model a process that can be used for the discovery of antichlamydial, anti-intracellular, or antibacterial compounds and has led to the identification of compounds that may have utility in both antibiotic discovery and furthering our understanding of chlamydial biology.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Chlamydia trachomatis/efeitos dos fármacos , Mutação , Quinolinas/farmacologia , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/análise , 4-Cloro-7-nitrobenzofurazano/química , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Linhagem Celular , Ceramidas/análise , Ceramidas/química , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Farmacorresistência Bacteriana , Camundongos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA